Author:
Price Victoria E.,Auster Peter J.,Kracker Laura
Abstract
AbstractPredator-prey interactions of large vagile fishes are difficult to study in the ocean due to limitations in the space and time requirements for observations. Small-scale direct underwater observations by divers (ca. <10 m radius) and large-scale hydroacoustic surveys
(10 s m2 to 100 s km2) are traditional approaches for surveying fish. However, large piscivorous predators identify and attack prey at the scale of meters to tens of meters. Dual-Frequency Identification Sonar (or DIDSON) is a high-resolution acoustic camera operating
in the MHz range that provides detailed continuous video-like imaging of objects up to a range of 30 m. This technology can be used to observe predator-prey interactions at ecologically relevant space and time scales often missed by traditional methods. Here we establish an approach for quantifying
predation-related behaviors from DIDSON records. Metrics related to predator and prey group size, prey responses to predation, predation rate, predator strategies, and the nonrandom use of landscape features by both predator and prey are described. In addition, relationships between patterns
in these attributes are tested and issues regarding sampling strategies for future studies are discussed. We suggest that approaches combining direct visual observation and acoustic sampling at multiple scales are required to quantify variation in these relationships across underwater landscapes.
Publisher
Marine Technology Society
Subject
Ocean Engineering,Oceanography
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献