Monitoring and Research on Submarine Hydrate Mound: Review and Future Perspective

Author:

Ge YongqiangORCID,Cao ChenORCID,Chen JiawangORCID,Wang HaoORCID,Zhang PeihaoORCID,He JiaminORCID,Lin YuanORCID

Abstract

Abstract Submarine hydrate mounds are important indicators of submarine methane seepages, hydrocarbon reservoirs, and seabed instability. In order to fully understand the formation of hydrate mounds, here, we review the study of hydrate mounds, in which the morphology, the formation mechanism, as well as the research techniques are introduced. The formation mechanism of hydrate mounds can be classified into: (1) The sediment volume expands due to the formation and accumulation of shallow hydrates; (2) unconsolidated shallow sediment layers respond mechanically to increasing pore pressure caused by shallow gas accumulation; (3) materials extrude from submarine layers driven by the over-pressure caused by shallow gas accumulation; and (4) the interaction of multiple factors. Most hydrate mounds occur in submarine gas hydrate occurrence areas. Active hydrate mounds are circular or ellipse well-rounded shaped, with gas seepages and abundant organisms, whereas inactive hydrate mounds are rough or uneven irregular shaped, with low flux of fluid in the migration channel. Due to the limitation of long-term in-situ observation technology, the existing observation method makes it possible to provide basic morphology features, stratigraphic structures, and fluid migration channels of the hydrate mound. Future research should be focused on the long-term in-situ monitoring technology, the formation mechanism of the hydrate mounds, and the role of gas hydrates in the seafloor evolution. In addition, the features of hydrate mounds (e.g., gas chimneys and fluid migration conduits) and the relationship between hydrate mounds and pockmarks could be further studied to clarify the influence of methane release from hydrate mounds on biogeochemical processes and the atmospheric carbon contents.

Publisher

Marine Technology Society

Subject

Ocean Engineering,Oceanography

Reference110 articles.

1. Ocean methane hydrates as a slow tipping point in the global carbon cycle;Proc Natl Acad Sci USA,2009

2. Mega-pockmarks and linear pockmark trains on the West African continental margin;Mar Geol,2007

3. Mud volcanoes of the Orinoco Delta Eastern Venezuela;Geomorphology,2001

4. Sedimentation and seafloor mound formation in the southern slope of the Ulleung Basin, East Sea, Korea, since the Last Glacial Maximum;Geosci J,2013

5. Building the world's first multi-node cabled ocean observatories (NEPTUNE Canada and VENUS, Canada): Science, realities, challenges and opportunities,2008

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3