Adaptive Wireless Power for Subsea Vehicles

Author:

Manalang DanaORCID,Waters Benjamin,Smith Chasen,LaMothe Philip,Carlson Matt,Yan Kedi

Abstract

Abstract Wireless power transfer in seawater removes the inherent risks and complexities of mating conductive surfaces in seawater. An effective underwater wireless power transfer system for subsea vehicles must maintain power transfer despite the potential for dynamic misalignment between the power transmission and receive elements and therefore requires an adaptive system. We describe the development and characterization of a subsea wireless power system, including a transmit-receive coil pair optimized for seawater performance. Built on the adaptive resonant wireless power transfer technology of WiBotic, Inc., the system automatically adjusts for misalignment and separation between the transmit and receive coils. We demonstrate that transmit-receive coil pairs can be effectively tuned to provide adaptive wireless power transfer in salt water, with no significant effects of increased pressure at depth. Furthermore, we describe the full system marinization of the wireless power system and its application to a system that uses a wave energy converter for subsea vehicle charging.

Publisher

Marine Technology Society

Subject

Ocean Engineering,Oceanography

Reference12 articles.

1. Underwater wireless power transfer;2015 IEEE Wireless Power Transfer Conference (WPTC),2015

2. Non-contact wet mateable connector,2009

3. Challenges, benefits, and opportunities in installing and operating cabled ocean observatories: Perspectives from NEPTUNE Canada;IEEE J Ocean Eng,2012

4. Off-shore wave energy harvesting: A WEC-microturbine system: Harvesting and storing energy for off-shore applications,2015

5. Non-contact wet mateable connectors for power and data transmission,2013

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3