Research on Terrain Monitoring Device of Natural Gas Hydrate Trial Production Area in the Sea

Author:

Cao Chen,Ge Yongqiang,Chen Jiawang,Wang Hao,Ge Han,Zhou Peng,Gao Feng,Sheng Yan,Tian Lieyu,Huang Yifan

Abstract

Abstract As an important green energy source for the future, deep-sea natural gas hydrate has attracted worldwide attention in recent years, and several trial exploitations have been carried out. Hydrates are prone to decomposition leading to terrain subsidence; hence, there is an urgent need to monitor terrain change during the exploration. In this study, a monitoring device based on six-axis Micro-Electro-Mechanical System array is developed to monitor the terrain subsidence during production of gas hydrate. The liability of the device has been tested both by lab experiments and a sea trial in the “Shenhu” area of the South China Sea with water-depth of 1,203 m. The device performed in-situ monitoring for 193 consecutive days; the deformation of the seafloor terrain has been successfully measured, and the seafloor topography has been obtained and reconstructed, showing that the overall average uplift of the seafloor terrain is 0.82 cm, with a maximum uplift of 5.98 cm and a maximum subsidence of 3.21 cm. The result shows that the geological conditions in the “Shenhu” area are stable, which provide a reference for the development of hydrates.

Publisher

Marine Technology Society

Subject

Ocean Engineering,Oceanography

Reference24 articles.

1. Evaluation of soft clay field consolidation using MEMS-based in-place inclinometer–accelerometer array;Geotech,2015

2. Current perspectives on gas hydrate resources;Energy Environ Sci,2011

3. Estimation of the global amount of submarine gas hydrates formed via microbial methane formation based on numerical reaction-transport modeling and a novel parameterization of Holocene sedimentation;Geochim Cosmochim Acta,2011

4. Deep-sea submarine terrain monitoring—A brand new way,2019

5. Seafloor deformation and forecasts of the April 2011 eruption at axial seamount;Nat Geosci,2012

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3