Installation of a High Sensitivity Ocean Borehole Strainmeter in the Nankai Trough Under Severe Sea Current Conditions

Author:

Machida Yuya,Araki Eiichiro,Kimura Toshinori,Saffer Demian M.,Saruhashi Tomokazu,Yokoyama Takahiro,Sakurai Noriaki

Abstract

AbstractA high-sensitivity volumetric strainmeter has been installed into the C0010 borehole observatory using the drilling vessel (D/V) Chikyu during the Expedition 365 cruise in the Nankai Trough, Japan. At this location, crustal deformation occurs in association with large interplate earthquakes. However, strong Kuroshio ocean currents cause vortex-induced vibrations (VIVs) in the region, which can cause fatal damage to the strainmeter. Therefore, laboratory vibration tests were performed prior to installation to confirm that the antivibration mechanism inside the strainmeter was functional against the severe vibrations during installation. VIV was measured prior to installing the strainmeter into the C0010A borehole using accelerometers at the installation site. The results indicated that the VIV were within the specification of the antivibration mechanism. This meant that installation of the strainmeter into the borehole was possible. To maximize sensor sensitivity, it is extremely important to ensure mechanical coupling of the strainmeter with the borehole wall by cementing operation after installation. The cementing process was confirmed using a pressure recording device incorporated within the strainmeter. Pressure data clearly showed that seawater had been displaced with cement slurry. Data from the strainmeter clearly showed tidal waveforms, which are comparable to those of pressure data recorded by a borehole pressure sensor installed at approximately the same depth. Accuracies of the strain data were validated through the procedure. They suggest that the first installation of the ocean borehole strainmeter in the Nankai Trough was successful, and therefore, highly sensitive strain measurement is now possible in a seismically active area.

Publisher

Marine Technology Society

Subject

Ocean Engineering,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3