Abstract
Many applications of geospatial data in coastal environments require knowledge of the near-shore topography and bathymetry. However, because existing topographic and bathymetric data have been collected independently for different purposes, it has been difficult to use them together
at the land/water interface owing to differences in format, projection, resolution, accuracy, and datums. As a first step toward solving the problems of integrating diverse coastal datasets, the U.S. Geological Survey (USGS) and the National Oceanic and Atmospheric Administration (NOAA) are
collaborating on a joint demonstration project to merge their data for the Tampa Bay region of Florida. The best available topographic and bathymetric data were extracted from the USGS National Elevation Dataset and the NOAA hydrographic survey database, respectively. Before being merged,
the topographic and bathymetric datasets were processed with standard geographic information system tools to place them in a common horizontal reference frame. Also, a key part of the preprocessing was transformation to a common vertical reference through the use of VDatum, a new tool created
by NOAA's National Geodetic Survey for vertical datum conversions. The final merged product is a seamless topographic/bathymetric model covering the Tampa Bay region at a grid spacing of 1 arc-second. Topographic LIDAR data were processed and merged with the bathymetry to demonstrate the incorporation
of recent third party data sources for several test areas. A primary application of a merged topographic/bathymetric elevation model is for user-defined shoreline delineation, in which the user decides on the tidal condition (for example, low or high water) to be superimposed on the elevation
data to determine the spatial position of the water line. Such a use of merged topographic/bathymetric data could lead to the development of a shoreline zone, which could reduce redundant mapping efforts by federal, state, and local agencies by allowing them to customize their portrayals of
the shoreline using a standard baseline elevation dataset.
Publisher
Marine Technology Society
Subject
Ocean Engineering,Oceanography
Cited by
53 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献