Abstract
Wind is a rapidly growing renewable energy source, increasing at an annual rate of 30%, with the vast majority of wind power generated from onshore wind farms. The growth of these facilities, however, is limited by the lack of inexpensive land near major population centers and the visual
impact caused by large wind turbines.Wind energy generated from floating offshore wind farms is the next frontier. Vast sea areas with stronger and steadier winds are available for wind farm development and 5 MW wind turbine towers located 20 miles from the coastline are invisible. Current
offshore wind turbines are supported by monopoles driven into the seafloor or other bottom mounted structures at coastal sites a few miles from shore and in water depths of 10-15 m. The primary impediment to their growth is their prohibitive cost as the water depth increases.This article
discusses the technologies and the economics associated with the development of motion resistant floating offshore wind turbines drawing upon a seven-year research effort at MIT. Two families of floater concepts are discussed, inspired by developments in the oil and gas industry for the deep
water exploration of hydrocarbon reservoirs. The interaction of the floater response dynamics in severe weather with that of the wind turbine system is addressed and the impact of this coupling on the design of the new generation of multi-megawatt wind turbines for offshore deployment is discussed.
The primary economic drivers affecting the development of utility scale floating offshore wind farms are also addressed.
Publisher
Marine Technology Society
Subject
Ocean Engineering,Oceanography
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献