Development of a Bioinspired Underwater Robot Using a Single Actuator
-
Published:2017-09-01
Issue:5
Volume:51
Page:94-102
-
ISSN:0025-3324
-
Container-title:Marine Technology Society Journal
-
language:en
-
Short-container-title:mar technol soc j
Author:
Jun Myoung-Jae,Han Chang-Soo
Abstract
Abstract We propose a novel propulsion mechanism for an underwater robot inspired by the pectoral fins of a fish. This device is referred to as the “flipper.” The flipper is connected to a rotational motor, and its shape is similar to that of the real fish's fins.
The flipper using the propulsion mechanism proposed in this study has 1 degree of freedom. We can control the test robot during forward motion as well as its direction-changing operation. The experimental test robot is composed of a flipper at the front of the robot's head, together with a
body and a tail/vertical fin. The electronic components are installed into the body. The tail functions to maintain the horizontal/vertical balance of the robot. Forward propulsion is achieved through the rotation of the flipper. The robot's direction can be changed by repeated oscillation
of the flipper in a direction opposite to that of the desired angle. Several experiments were performed to measure the thrust force of the experimental robot and its motion characteristics in a test water pool. The experimental results show that the proposed propulsion method is viable.<def-list>
Nomenclature <def-item> <term> F T </term> <def> = Thrust </def> </def-item> <def-item> <term> F I </term> <def> = Inertia force </def> </def-item> <def-item>
<term> F B </term> <def> = Buoyancy </def> </def-item> <def-item> <term> B V </term> <def> = Platform volume </def> </def-item> <def-item> <term> V target
</term> <def> = Target speed </def> </def-item> <def-item> <term> ρ </term> <def> = Water density </def> </def-item> <def-item> <term> P </term> <def> = Flipper pitch
</def> </def-item> <def-item> <term> D </term> <def> = Drag force </def> </def-item> <def-item> <term> C D </term> <def> = Drag coefficient </def> </def-item> <def-item>
<term> A </term> <def> = Projection of the frontal area </def> </def-item> <def-item> <term> T </term> <def> = Effective power </def> </def-item> <def-item> <term> P m
</term> <def> = Propeller power </def> </def-item> <def-item> <term> C M </term> <def> = Center of total body mass </def> </def-item> <def-item> <term> C B </term>
<def> = Center of buoyancy </def> </def-item> <def-item> <term> C F </term> <def> = Center of flipper mass </def> </def-item> <def-item> <term> F DS </term> <def>
= Restoring force </def> </def-item> <def-item> <term> g </term> <def> = Gravity </def> </def-item> <def-item> <term> Q </term> <def> = Motor torque at maximum revolutions per minute
</def> </def-item> <def-item> <term> rps reasonable </term> <def> = Reasonable revolutions per second </def> </def-item> </def-list>
Publisher
Marine Technology Society
Subject
Ocean Engineering,Oceanography
Reference9 articles.
1. Underwater Robots;Antonelli,2014
2. Hydrodynamics analysis of fish locomotion using a biomimetic fish robot;Han;The Korean Society of Mechanical Engineers Conference,2007
3. Mechanical design, fabrication and test of a biomimetic fish robot using LIPCA as an artificial muscle;Heo;The Korean Society of Mechanical Engineers Conference,2007
4. Stabilization of underwater glider by buoyancy and moment control: Feedback linearization approach;Jee;J Ocean Eng Technol,2014
5. Design and control of 6 DOF (degrees of freedom) hovering AUV;Jeong;J I Control Robot Syst,2013