A Numerical Analysis of Bidirectional Ducted Tidal Turbines in Yawed Flow

Author:

Belloni Clarissa S.K.,Willden Richard H.J.,Houlsby Guy T.

Abstract

AbstractThe paper presents a computational study of ducted bidirectional tidal turbines using three-dimensional Reynolds-averaged Navier-Stokes simulations. We model the outer duct as a solid body and use a porous disc to represent the turbine rotor, a simplification that captures changes in linear momentum and thus the primary interaction of the turbine with the flow through and around the duct while greatly reducing computational complexity. The duct is modeled using linearly converging and diverging sections and a short straight pipe at the duct throat.We investigate the performance of bare and ducted turbines and relate these to the flows through the devices. For the ducted turbine under investigation, we show a substantial decrease in power generated relative to a bare turbine of diameter equal to the external diameter of the duct. In the case of ducted turbines with concave duct exteriors, we observe two external flow regimes with increasing turbine thrust: nozzle-contoured and separation dominated regimes. Maximum power occurs within the separation dominated flow regime due to the additional channel blockage created by the external separation.The ducts of ducted tidal turbines have been argued to provide a flow straightening effect, allowing modest yaw angles to be readily accommodated. We present a comparison of bare and ducted turbine performance in yawed flow. We show that while bare turbine performance decreases in yawed flow, ducted turbine performance increases. This is due to both a flow straightening effect and also an increase in effective blockage as ducts present greater projected frontal area when approached nonaxially.

Publisher

Marine Technology Society

Subject

Ocean Engineering,Oceanography

Reference23 articles.

1. ANSYS FLUENT 12.0 User's Guide,2009

2. Advanced turbulence modelling of separated flow in a diffuser;Aplsey;Flow Turbul Combust,1999

3. Flow field and performance analysis of bidirectional and open-centre ducted tidal turbines;Belloni,2011

4. Das Maximum der theoretisch möglichen Ausnutzung des Windes durch Windmotoren;Betz;Zeitschrift fr das gesamte Turbinenwesen,1920

5. Blockage effects on the hydrodynamic performance of a marine cross-flow turbine;Consul;Philos Trans R Soc A,2013

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3