Investigation of the Relationship Between the Yucatan Channel Transport and the Loop Current Area in a Multidecadal Numerical Simulation

Author:

Nedbor-Gross Robert,Dukhovskoy Dmitry S.,Bourassa Mark A.,Morey Steven L.,Chassignet Eric P.

Abstract

Abstract A hypothesis by Maul (1977), stating the rate of change of loop current (LC) volume is related to deep Yucatan Channel (YC) transport, is tested with a continuous 54-year simulation of the Gulf of Mexico (GoM) using a regional 1/25° resolution Hybrid Coordinate Ocean Model (HYCOM) configuration. The hypothesis states that the imbalance of transport between the upper YC and the Florida Straits controls the rate of change of the LC volume and that the imbalance is compensated by transport through the deep YC. Bunge et al. (2002) found a strong relationship between the deep YC transport and the LC area using 7.5 months of data from a mooring array in the YC, but the observational record length was relatively short compared to the time scale of LC variability. The 54-year HYCOM simulation provides a much longer and spatially complete data set to study the LC variability. Results show that the time evolution of the LC between two shedding events can be viewed as a combination of relatively high-frequency fluctuations superimposed on a low-frequency trend. The high-frequency variability of the LC area time derivative and the deep YC transport are related. The low-frequency variability is examined by comparing the LC area time series with time-integrated transport in the deep YC, and statistically similar trends are identified, supporting the Maul (1977) theory.

Publisher

Marine Technology Society

Subject

Ocean Engineering,Oceanography

Reference22 articles.

1. Upper-layer circulation in the approaches to Yucatan Channel;Badan;Circulation in the Gulf of Mexico: Observations and Models,2005

2. Deep flows in the Yucatan Channel and their relation to changes in the Loop Current extension;Bunge;J Geophys Res.,2002

3. North Atlantic simulation with the Hybrid Coordinate Ocean Model (HYCOM): Impact of the vertical coordinate choice, reference density, and thermobaricity;Chassignet;J Phys Oceanogr.,2003

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3