Glider-Based Passive Acoustic Monitoring in the Arctic

Author:

Baumgartner Mark F.,Stafford Kathleen M.,Winsor Peter,Statscewich Hank,Fratantoni David M.

Abstract

AbstractPersistently poor weather in the Arctic makes traditional marine mammal research from aircraft and ships difficult, yet collecting information on marine mammal distribution and habitat utilization is vital for understanding the impact of climate change on Arctic ecosystems. Moreover, as industrial use of the Arctic increases with the expansion of the open-water summer season, there is an urgent need to monitor the effects of noise from oil and gas exploration and commercial shipping on marine mammals. During September 2013, we deployed a single Slocum glider equipped with a digital acoustic monitoring (DMON) instrument to record and process in situ low-frequency (<5 kHz) audio to characterize marine mammal occurrence and habitat as well as ambient noise in the Chukchi Sea off the northwest coast of Alaska, USA. The DMON was programmed with the low-frequency detection and classification system (LFDCS) to autonomously detect and classify sounds of a variety of Arctic and sub-Arctic marine mammal species. The DMON/LFDCS reported regularly in near real time via Iridium satellite detailed detection data, summary classification information, and spectra of background noise. The spatial distributions of bowhead whale, bearded seal, and walrus call rates were correlated with surface salinity measured by the glider. Bowhead whale and walrus call rates were strongly associated with a warm and salty water mass of Bering Sea origin. With a passive acoustic capability that allows both archival recording and near real-time reporting, we envision ocean gliders will become a standard tool for marine mammal and ocean noise research and monitoring in the Arctic.

Publisher

Marine Technology Society

Subject

Ocean Engineering,Oceanography

Reference38 articles.

1. Long-time trends in ship traffic noise for four sites off the North American West Coast;Andrew;J Acoust Soc Am.,2011

2. Diel periodicity in both sei whale vocalization rates and the vertical migration of their copepod prey observed from ocean gliders;Baumgartner;Limnol Oceanogr,2008

3. A generalized baleen whale call detection and classification system;Baumgartner;J Acoust Soc Am.,2011

4. Real-time reporting of baleen whale passive acoustic detections from ocean gliders;Baumgartner;J Acoust Soc Am.,2013

5. Bowhead whale (Balaena mysticetus) migration and calling behaviour in the Alaskan Beaufort sea, Autumn 2001-04: An acoustic localization study;Blackwell;Arctic,2007

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3