Causal Inference With Two Versions of Treatment

Author:

Hasegawa Raiden B.,Deshpande Sameer K.ORCID,Small Dylan S.,Rosenbaum Paul R.1

Affiliation:

1. University of Pennsylvania

Abstract

Causal effects are commonly defined as comparisons of the potential outcomes under treatment and control, but this definition is threatened by the possibility that either the treatment or the control condition is not well defined, existing instead in more than one version. This is often a real possibility in nonexperimental or observational studies of treatments because these treatments occur in the natural or social world without the laboratory control needed to ensure identically the same treatment or control condition occurs in every instance. We consider the simplest case: Either the treatment condition or the control condition exists in two versions that are easily recognized in the data but are of uncertain, perhaps doubtful, relevance, for example, branded Advil versus generic ibuprofen. Common practice does not address versions of treatment: Typically, the issue is either ignored or explicitly stated but assumed to be absent. Common practice is reluctant to address two versions of treatment because the obvious solution entails dividing the data into two parts with two analyses, thereby (a) reducing power to detect versions of treatment in each part, (b) creating problems of multiple inference in coordinating the two analyses, and (c) failing to report a single primary analysis that uses everyone. We propose and illustrate a new method of analysis that begins with a single primary analysis of everyone that would be correct if the two versions do not differ, adds a second analysis that would be correct were there two different effects for the two versions, controls the family-wise error rate in all assertions made by the several analyses, and yet pays no price in power to detect a constant treatment effect in the primary analysis of everyone. Our method can be applied to analyses of constant additive treatment effects on continuous outcomes. Unlike conventional simultaneous inferences, the new method is coordinating several analyses that are valid under different assumptions, so that one analysis would never be performed if one knew for certain that the assumptions of the other analysis are true. It is a multiple assumptions problem rather than a multiple hypotheses problem. We discuss the relative merits of the method with respect to more conventional approaches to analyzing multiple comparisons. The method is motivated and illustrated using a study of the possibility that repeated head trauma in high school football causes an increase in risk of early onset cognitive decline.

Publisher

American Educational Research Association (AERA)

Subject

Social Sciences (miscellaneous),Education

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3