Validation Methods for Aggregate-Level Test Scale Linking: A Case Study Mapping School District Test Score Distributions to a Common Scale

Author:

Reardon Sean F.,Kalogrides Demetra1,Ho Andrew D.2

Affiliation:

1. Stanford University

2. Harvard Graduate School of Education

Abstract

Linking score scales across different tests is considered speculative and fraught, even at the aggregate level. We introduce and illustrate validation methods for aggregate linkages, using the challenge of linking U.S. school district average test scores across states as a motivating example. We show that aggregate linkages can be validated both directly and indirectly under certain conditions such as when the scores for at least some target units (districts) are available on a common test (e.g., the National Assessment of Educational Progress). We introduce precision-adjusted random effects models to estimate linking error, for populations and for subpopulations, for averages and for progress over time. These models allow us to distinguish linking error from sampling variability and illustrate how linking error plays a larger role in aggregates with smaller sample sizes. Assuming that target districts generalize to the full population of districts, we can show that standard errors for district means are generally less than .2 standard deviation units, leading to reliabilities above .7 for roughly 90% of districts. We also show how sources of imprecision and linking error contribute to both within- and between-state district comparisons within versus between states. This approach is applicable whenever the essential counterfactual question—“what would means/variance/progress for the aggregate units be, had students taken the other test?”—can be answered directly for at least some of the units.

Funder

Institute of Education Sciences

Spencer Foundation

William T. Grant Foundation

Publisher

American Educational Research Association (AERA)

Subject

Social Sciences (miscellaneous),Education

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3