A Mixture Item Response Model for Multiple-Choice Data

Author:

Bolt Daniel M.1,Cohen Allan S.1,Wollack James A.1

Affiliation:

1. University of Wisconsin, Madison

Abstract

A mixture item response model is proposed for investigating individual differences in the selection of response categories in multiple-choice items. The model accounts for local dependence among response categories by assuming that examinees belong to discrete latent classes that have different propensities towards those responses. Varying response category propensities are captured by allowing the category intercept parameters in a nominal response model ( Bock, 1972 ) to assume different values across classes. A Markov Chain Monte Carlo algorithm for the estimation of model parameters and classification of examinees is described. A real-data example illustrates how the model can be used to distinguish examinees that are disproportionately attracted to different types of distractors in a test of English usage. A simulation study evaluates item parameter recovery and classification accuracy in a hypothetical multiple-choice test designed to be diagnostic. Implications for test construction and the use of multiple-choice tests to perform cognitive diagnoses of item response patterns are discussed.

Publisher

American Educational Research Association (AERA)

Subject

Social Sciences (miscellaneous),Education

Cited by 92 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3