An Effect Size for Regression Predictors in Meta-Analysis

Author:

Aloe Ariel M.1,Becker Betsy Jane2

Affiliation:

1. University at Buffalo—State University of New York

2. Florida State University

Abstract

A new effect size representing the predictive power of an independent variable from a multiple regression model is presented. The index, denoted as rsp, is the semipartial correlation of the predictor with the outcome of interest. This effect size can be computed when multiple predictor variables are included in the regression model and represents a partial effect size in the correlation family. The derivations presented in this article provide the effect size and its variance. Standard errors and confidence intervals can be computed for individual rsp values. Also, meta-analysis of the semipartial correlations can proceed in a similar fashion to typical meta-analyses, where weighted analyses can be used to explore heterogeneity and to estimate central tendency and variation in the effects. The authors provide an example from a meta-analysis of studies of the relationship of teacher verbal ability to school outcomes.

Publisher

American Educational Research Association (AERA)

Subject

Social Sciences (miscellaneous),Education

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3