Affiliation:
1. Mathematica Policy Research, Inc., Princeton, NJ
Abstract
In education randomized control trials (RCTs), the misreporting of student outcome data could lead to biased estimates of average treatment effects (ATEs) and their standard errors. This article discusses a statistical model that adjusts for misreported binary outcomes for two-level, school-based RCTs, where it is assumed that misreporting could occur for students with truly undesirable outcomes, but not for those with truly desirable outcomes. A latent variable index approach using study baseline data is employed to model both the misreporting and binary outcome decision processes, separately for treatments and controls, using random effects probit models to adjust for school-level clustering. Quasi-Newton maximum likelihood methods are developed to obtain consistent estimates of the ATE parameter and the unobserved misreporting rates. The estimation approach is demonstrated using self-reported arrest data from a large-scale RCT of Job Corps, the nation’s largest residential training program for disadvantaged youths between the ages of 16 and 24.
Publisher
American Educational Research Association (AERA)
Subject
Social Sciences (miscellaneous),Education
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献