Detecting a Change in School Performance: A Bayesian Analysis for a Multilevel Join Point Problem

Author:

Thum Yeow Meng1,Bhattacharya Suman K.2

Affiliation:

1. University of California, Los Angeles

2. R. W. Johnson Pharmaceutical Research Institute

Abstract

A substantial literature on switches in linear regression functions considers situations in which the regression function is discontinuous at an unknown value of the regressor, Xk , where k is the so-called unknown “change point.” The regression model is thus a two-phase composite of yi ∼ N(β01 + β11xi, σ12), i=1, 2,..., k and yi ∼ N(β02 + β12xi, σ22), i= k + 1, k + 2,..., n. Solutions to this single series problem are considerably more complex when we consider a wrinkle frequently encountered in evaluation studies of system interventions, in that a system typically comprises multiple members (j = 1, 2, . . . , m ) and that members of the system cannot all be expected to change synchronously. For example, schools differ not only in whether a program, implemented system-wide, improves their students’ test scores, but depending on the resources already in place, schools may also differ in when they start to show effects of the program. If ignored, heterogeneity among schools in when the program takes initial effect undermines any program evaluation that assumes that change points are known and that they are the same for all schools. To describe individual behavior within a system better, and using a sample of longitudinal test scores from a large urban school system, we consider hierarchical Bayes estimation of a multilevel linear regression model in which each individual regression slope of test score on time switches at some unknown point in time, kj. We further explore additional results employing models that accommodate case weights and shorter time series.

Publisher

American Educational Research Association (AERA)

Subject

Social Sciences (miscellaneous),Education

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3