Affiliation:
1. CTB/McGraw-Hill
2. Carnegie Mellon University
Abstract
Patz and Junker (1999) describe a general Markov chain Monte Carlo (MCMC) strategy, based on Metropolis-Hastings sampling, for Bayesian inference in complex item response theory (IRT) settings. They demonstrate the basic methodology using the two-parameter logistic (2PL) model. In this paper we extend their basic MCMC methodology to address issues such as non-response, designed missingness, multiple raters, guessing behavior and partial credit (polytomous) test items. We apply the basic MCMC methodology to two examples from the National Assessment of Educational Progress 1992 Trial State Assessment in Reading: (a) a multiple item format (2PL, 3PL, and generalized partial credit) subtest with missing response data; and (b) a sequence of rated, dichotomous short-response items, using a new IRT model called the generalized linear logistic test model (GLLTM).
Publisher
American Educational Research Association (AERA)
Subject
Social Sciences (miscellaneous),Education
Cited by
208 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献