Extending an Identified Four-Parameter IRT Model: The Confirmatory Set-4PNO Model

Author:

Kern Justin L.1ORCID

Affiliation:

1. University of Illinois at Urbana-Champaign

Abstract

Given the frequent presence of slipping and guessing in item responses, models for the inclusion of their effects are highly important. Unfortunately, the most common model for their inclusion, the four-parameter item response theory model, potentially has severe deficiencies related to its possible unidentifiability. With this issue in mind, the dyad four-parameter normal ogive (Dyad-4PNO) model was developed. This model allows for slipping and guessing effects by including binary augmented variables—each indicated by two items whose probabilities are determined by slipping and guessing parameters—which are subsequently related to a continuous latent trait through a two-parameter model. Furthermore, the Dyad-4PNO assumes uncertainty as to which items are paired on each augmented variable. In this way, the model is inherently exploratory. In the current article, the new model, called the Set-4PNO model, is an extension of the Dyad-4PNO in two ways. First, the new model allows for more than two items per augmented variable. Second, these item sets are assumed to be fixed, that is, the model is confirmatory. This article discusses this extension and introduces a Gibbs sampling algorithm to estimate the model. A Monte Carlo simulation study shows the efficacy of the algorithm at estimating the model parameters. A real data example shows that this extension may be viable in practice, with the data fitting a more general Set-4PNO model (i.e., more than two items per augmented variable) better than the Dyad-4PNO, 2PNO, 3PNO, and 4PNO models.

Publisher

American Educational Research Association (AERA)

Subject

Social Sciences (miscellaneous),Education

Reference29 articles.

1. Asparouhov T., Muthén B. (2020). IRT in Mplus (Technical Report). http://www.statmodel.com/download/MplusIRT. pdf (Version 4).

2. AN UPPER ASYMPTOTE FOR THE THREE-PARAMETER LOGISTIC ITEM-RESPONSE MODEL*

3. High-dimensional Exploratory Item Factor Analysis by A Metropolis–Hastings Robbins–Monro Algorithm

4. Editorial, Spring 2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3