Affiliation:
1. University of Chicago
2. University of North Carolina, Chapel Hill
Abstract
When there is publication bias, studies yielding large p values, and hence small effect estimates, are less likely to be published, which leads to biased estimates of effects in meta-analysis. We investigate a selection model based on one-tailed p values in the context of a random effects model. The procedure both models the selection process and corrects for the consequences of selection on estimates of the mean and variance of effect parameters. A test of the statistical significance of selection is also provided. The small sample properties of the method are evaluated by means of simulations, and the asymptotic theory is found to be reasonably accurate under correct model specification and plausible conditions. The method substantially reduces bias due to selection when model specification is correct, but the variance of estimates is increased; thus mean squared error is reduced only when selection produces substantial bias. The robustness of the method to violations of assumptions about the form of the distribution of the random effects is also investigated via simulation, and the model-corrected estimates of the mean effect are generally found to be much less biased than the uncorrected estimates. The significance test for selection bias, however, is found to be highly nonrobust, rejecting at up to 10 times the nominal rate when there is no selection but the distribution of the effects is incorrectly specified.
Publisher
American Educational Research Association (AERA)
Subject
Social Sciences (miscellaneous),Education
Cited by
163 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献