Affiliation:
1. University of Minnesota
Abstract
Results from exact statistical theory and Monte Carlo studies have provided evidence that the test size and power of the F test in analysis of covariance are sensitive to violations of certain assumptions. However, a comprehensive summary of the effect of assumption violations has not been available. In this article, meta-analytic methods are used to summarize the results of Monte Carlo studies of the test size and power of the F test in the single-factor, fixed-effects analysis of covariance model, updating and extending narrative reviews of this literature. Monte Carlo results for the nonparametric rank-transform test in the analysis of covariance model are also analyzed. Guidelines for using these tests when assumptions are violated are presented to promote more judicious use of these procedures.
Publisher
American Educational Research Association (AERA)
Subject
Social Sciences (miscellaneous),Education
Cited by
31 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献