Detection of Differential Item Functioning Using the Lasso Approach

Author:

Magis David1,Tuerlinckx Francis2,De Boeck Paul3

Affiliation:

1. KU Leuven University of Liège

2. University of Leuven

3. Ohio State University University of Leuven

Abstract

This article proposes a novel approach to detect differential item functioning (DIF) among dichotomously scored items. Unlike standard DIF methods that perform an item-by-item analysis, we propose the “LR lasso DIF method”: logistic regression (LR) model is formulated for all item responses. The model contains item-specific intercepts, an effect of the sum score, and item-group interaction (i.e., DIF) effects, with a lasso penalty on all DIF parameters. Optimal penalty parameter selection is investigated through several known information criteria (Akaike information criterion, Bayesian information criterion, and cross validation) as well as through a newly developed alternative. A simulation study was conducted to compare the global performance of the suggested LR lasso DIF method to the LR and Mantel–Haenszel methods (in terms of false alarm and hit rates). It is concluded that for small samples, the LR lasso DIF approach globally outperforms the LR method, and also the Mantel–Haenszel method, especially in the presence of item impact, while it yields similar results with larger samples.

Publisher

American Educational Research Association (AERA)

Subject

Social Sciences (miscellaneous),Education

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3