Quantitative Approaches for Analyzing Longitudinal Data in Second Language Research

Author:

Barkaoui Khaled

Abstract

This article discusses methods used in second language (L2) research to analyze quantitative longitudinal data. Longitudinal studies are experimental and nonexperimental studies that collect repeated measures of the same variable(s) from the same participant(s) at two or more time points. Three challenging areas in longitudinal L2 research are first discussed: study design, measurement, and data analysis and modeling. Next, various traditional and recent quantitative approaches for analyzing longitudinal data are discussed, including difference or gain scores, repeated measures univariate and multivariate analysis of variance (RM ANOVA, MANOVA), multilevel modeling (MLM), autoregressive models and latent growth curve modeling (LGCM) within the structural equation modeling (SEM) framework, item response theory (IRT), single-case research designs and time series analysis (TSA), and event history analysis (EHA). Longitudinal L2 studies published in the last 10 years are reviewed to identify trends and patterns in the use of different quantitative approaches for analyzing longitudinal L2 data, describe best data analysis practices in such research, and provide recommendations for future longitudinal L2 studies. It is argued that, when feasible and appropriate, recent approaches (e.g., MLM, LGCM) have several conceptual, methodological, and practical advantages and can stimulate the development and empirical examination of more complex questions and models concerning L2 development over time than is possible with traditional techniques.

Publisher

Cambridge University Press (CUP)

Subject

Linguistics and Language,Language and Linguistics

Reference136 articles.

1. Genre-based tasks in foreign language writing: Developing writers’ genre awareness, linguistic knowledge, and writing competence

2. Time Series Analysis: Traditional and Contemporary Approaches

3. Measuring pretest-posttest change with a Rasch rating scale model;Wolfe;Journal of Outcome Measurement,1999

4. Measuring change across multiple occasions using the Rasch rating scale model;Wolfe;Journal of Outcome Measurement,1999

5. Questions and answers in the measurement of change;Willett;Review of Research in Education,1988

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3