Author:
Hansen David,Kaletha Tasho,Weinstein Jared
Abstract
Abstract
Kottwitz’s conjecture describes the contribution of a supercuspidal representation to the cohomology of a local Shimura variety in terms of the local Langlands correspondence. A natural extension of this conjecture concerns Scholze’s more general spaces of local shtukas. Using a new Lefschetz–Verdier trace formula for v-stacks, we prove the extended conjecture, disregarding the action of the Weil group, and modulo a virtual representation whose character vanishes on the locus of elliptic elements. As an application, we show that, for an irreducible smooth representation of an inner form of
$\operatorname {\mathrm {GL}}_n$
, the L-parameter constructed by Fargues–Scholze agrees with the usual semisimplified parameter arising from local Langlands.
Publisher
Cambridge University Press (CUP)
Subject
Discrete Mathematics and Combinatorics,Geometry and Topology,Mathematical Physics,Statistics and Probability,Algebra and Number Theory,Analysis
Reference63 articles.
1. Sign changes in harmonic analysis on reductive groups
2. [Yu19] Yu, J. , ‘The integral geometric Satake equivalence in mixed characteristic’, Preprint, 2019, arXiv: 1903.11132.
3. Groupes Réductifs Sur Un Corps Local
4. On certain unitary group Shimura varieties;Mantovan;Variétés de Shimura, espaces de Rapoport–Zink et correspondances de Langlands locales,2004
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献