On the Kottwitz conjecture for local shtuka spaces

Author:

Hansen David,Kaletha Tasho,Weinstein Jared

Abstract

Abstract Kottwitz’s conjecture describes the contribution of a supercuspidal representation to the cohomology of a local Shimura variety in terms of the local Langlands correspondence. A natural extension of this conjecture concerns Scholze’s more general spaces of local shtukas. Using a new Lefschetz–Verdier trace formula for v-stacks, we prove the extended conjecture, disregarding the action of the Weil group, and modulo a virtual representation whose character vanishes on the locus of elliptic elements. As an application, we show that, for an irreducible smooth representation of an inner form of $\operatorname {\mathrm {GL}}_n$ , the L-parameter constructed by Fargues–Scholze agrees with the usual semisimplified parameter arising from local Langlands.

Publisher

Cambridge University Press (CUP)

Subject

Discrete Mathematics and Combinatorics,Geometry and Topology,Mathematical Physics,Statistics and Probability,Algebra and Number Theory,Analysis

Reference63 articles.

1. Sign changes in harmonic analysis on reductive groups

2. [Yu19] Yu, J. , ‘The integral geometric Satake equivalence in mixed characteristic’, Preprint, 2019, arXiv: 1903.11132.

3. Groupes Réductifs Sur Un Corps Local

4. On certain unitary group Shimura varieties;Mantovan;Variétés de Shimura, espaces de Rapoport–Zink et correspondances de Langlands locales,2004

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Local Langlands correspondences in $$\ell $$-adic coefficients;manuscripta mathematica;2024-06-21

2. Compatibility of the Fargues–Scholze correspondence for unitary groups;Mathematische Annalen;2024-04-26

3. An approach to the characterization of the local Langlands correspondence;Representation Theory of the American Mathematical Society;2023-07-07

4. Local terms for transversal intersections;Compositio Mathematica;2023-04-20

5. The Kottwitz conjecture for unitary PEL-type Rapoport–Zink spaces;Journal für die reine und angewandte Mathematik (Crelles Journal);2023-02-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3