Preliminary analysis of gaseous radiocarbon behavior in a geological repository hosted in salt rock

Author:

Levizzari Riccardo,Ferrucci Barbara,Luce Alfredo

Abstract

ABSTRACTA preliminary evaluation of gaseous radiocarbon (14C) behavior under geological repository conditions for Italian radioactive high level waste-long-lived and intermediate level waste disposal has been performed. Although in Italy there is still no defined project for a geological disposal facility, current work may support future safety assessment studies for a hypothetical future repository in deep salt rock. In the Italian context of radioactive waste, the percentage of 14C bearing waste to be disposed in a possible geological repository is low; irradiated graphite is the most important radiological source. Data about the radiological inventory has been collected to simulate production and migration of gaseous 14C in a hypothetical geological repository. Three different conceptual models have been developed and simulated. The first model has considered a preliminary evaluation of the radiological impact referred to the whole inventory; the second and third model have evaluated the impact only due to the irradiated graphite. A preliminary sensitivity analysis has been carried out, highlighting the importance of geometry and of distribution coefficients (Kd) in materials used to seal the disposal underground facility. Results show the possibility to correlate the Kd values, the volume and the location of the sealing materials to the amount of 14C migrating toward the surface.

Publisher

Cambridge University Press (CUP)

Subject

General Earth and Planetary Sciences,Archeology

Reference25 articles.

1. Toulhoat N , Moncoffre N , Narkunas E , Poskas P , Bucur C , Ichim C. 2018. Final report on results from Work Package 5: 14C in irradiated graphite. CAST Project Report D5.19. Available at https://www.projectcast.eu/

2. Is there a limit for high-pH life?

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3