Abstract
AbstractA primary challenge for researchers that make use of observational data is selection bias (i.e. the units of analysis exhibit systematic differences and dis-homogeneities due to non-random selection into treatment). This article encourages researchers in acknowledging this problem and discusses how and – more importantly – under which assumptions they may resort to statistical matching techniques to reduce the imbalance in the empirical distribution of pre-treatment observable variables between the treatment and control groups. With the aim of providing a practical guidance, the article engages with the evaluation of the effectiveness of peacekeeping missions in the case of the Bosnian civil war, a research topic in which selection bias is a structural feature of the observational data researchers have to use, and shows how to apply the Coarsened Exact Matching (CEM), the most widely used matching algorithm in the fields of Political Science and International Relations.
Publisher
Cambridge University Press (CUP)
Subject
Political Science and International Relations,Sociology and Political Science
Reference62 articles.
1. Entropy Balancing for Causal Effects: A Multivariate Reweighting Method to Produce Balanced Samples in Observational Studies
2. Khandker, SR , Koolwal, GB and Samad, HA (2010) Handbook on impact evaluation: quantitative methods and practices. World Bank. © World Bank. Available at https://openknowledge.worldbank.org/handle/10986/2693 License: CC BY 3.0 IGO.
3. Weakening the Enemy
4. What To Do (and Not to Do) with Time-Series Cross-Section Data
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献