14C Age Offset in the Mar Piccolo Sea Basin in Taranto (Southern Italy) Estimated on Cerastoderma Glaucum (Poiret, 1789)

Author:

Quarta Gianluca,Fago Paola,Calcagnile Lucio,Cipriano Giulia,D’Elia Marisa,Moretti Massimo,Scardino Giovanni,Valenzano Eliana,Mastronuzzi Giuseppe

Abstract

ABSTRACTThe stratigraphic succession of the Mar Piccolo basin (Gulf of Taranto, Southern Italy) is well known in the scientific literature dealing with the last interglacial since its morphological evolution is influenced by sea level changes during Late Pleistocene-Holocene. The local Holocene sea level history is well known thanks to data deriving from peat and ash layers identified in different sediment cores obtained underwater and in coastal areas. Peat sediments are frequently interlayed with muddy-sand beds rich in Cerastoderma glaucum (Poiret, 1789). In the literature of the Mediterranean basin, AMS 14C dating on C. glaucum is widely used also in paleo-environmental reconstruction because this bivalve is considered an useful marker of sea level, though in lagoonal systems, large age offsets have been reported in different areas. Due to the availability of precise chronological and geochronological markers, in order to validate the use of C. glaucum in paleo sea level reconstruction, AMS 14C dating campaign was carried out on this bivalve deriving from several cores drilled in the Mar Piccolo basin and its nearby areas. Nineteen AMS 14C dating analyses carried out on C. glaucum sampled from different sediment cores up to a maximum of 30 m from the seafloor are presented. These results show an inconsistency of the ages in relation to a sea-level rise reconstruction model. The interpretation of the data was performed after the estimation of the local age offset calculated by analyzing six live samples, collected in 2017 in Mar Piccolo and in Croatia, and two samples dated to 1968–1969. The results show that for both the classes of samples (2017 and 1960s) an age offset ranging from 600 to 800 yr can be estimated.

Publisher

Cambridge University Press (CUP)

Subject

General Earth and Planetary Sciences,Archeology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3