Preliminary Test of the EA-AGE3 System for 14C Measurement of CaCO3 Samples and Coral-Based Estimation of Marine Reservoir Correction in the Ogasawara Islands, Northwestern Subtropical Pacific

Author:

Saito-Kokubu Yoko,Mitsuguchi Takehiro,Watanabe Takahiro,Yamada Tsutomu,Asami Ryuji,Iryu YasufumiORCID

Abstract

ABSTRACTWe conducted a preliminary test of the coupled system of an elemental analyzer and the automated graphitization equipment Ionplus AGE3 (EA-AGE3 method) for accelerator mass spectrometry radiocarbon (AMS 14C) measurements of CaCO3 samples, by comparing with the conventional method where the samples are hydrolyzed in phosphoric acid and resulting CO2 gas is manually graphitized in a vacuum line (HPA method). The samples used in the test were the IAEA C2 travertine, fossil and modern corals from the Ryukyu Islands and the Ogasawara Islands, respectively (both are located in the northwestern subtropical Pacific). Results indicate that, relative to the HPA method, the EA-AGE3 method tends to cause an increase of ~0.4–0.5 pMC with more widely scattered data. This is presumably due to 14C contamination in the EA (the most likely cause seems to be a memory effect of 14C); this effect could be reduced by careful optimization of conditions and procedures in the EA process. The 14C data of pre-bomb annual bands (1931–1949 AD) in the modern Ogasawara coral obtained by the HPA method were used to estimate the marine reservoir 14C-age correction (ΔR) of this region; it ranges from –109 yr to –28 yr with the mean value with standard deviation of –81 ± 29 yr.

Publisher

Cambridge University Press (CUP)

Subject

General Earth and Planetary Sciences,Archeology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Status report of JAEA-AMS-TONO: Research and technical development in the last four years;Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms;2023-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3