Machine Learning Based Simulation for Design Space Exploration

Author:

Bleisinger O.,Malek C.,Holbach S.

Abstract

AbstractDesign of software in the automotive domain often involves simulation to allow early software parametrization. Modeling complex systems or components impacted by the software in an analytical way can be time-consuming, require domain knowledge and executing the analytical models can result in high computational effort. In specific applications, these challenges can be overcome by applying machine learning based simulation. This contribution presents results of a case study in which powertrain components are modeled data-driven with artificial neural networks to support design space exploration

Publisher

Cambridge University Press (CUP)

Reference17 articles.

1. Roy, K. , Mert, H. T. and Swaminathan, M. , “Preliminary Application of Deep Learning to Design Space Exploration,” 2018 IEEE Electrical Design of Advanced Packaging and Systems Symposium (EDAPS), 2018, pp. 1–3, https://dx.doi.org/10.1109/EDAPS.2018.8680888.

2. Faraz, A. , Ambikapathy, A. , Thangavel, S. , Logavani, K. , Arun Prasad, G. , “Battery Electric Vehicles (BEVs).,” in Patel, N. , Bhoi, A. K. , Padmanaban, S. , Holm-Nielsen, J. B. (eds), Electric Vehicles, Green Energy and Technology, Springer, Singapore, 2021, pp. 137–160, https://dx.doi.org/10.1007/978-981-15-9251-5_8.

3. Kabzan, J. , Hewing, L. , Liniger, A. and Zeilinger, M. N. , “Learning-Based Model Predictive Control for Autonomous Racing,” in IEEE Robotics and Automation Letters, vol. 4, no. 4, pp. 3363–3370, Oct. 2019, https://dx.doi.org/10.1109/LRA.2019.2926677.

4. Miriyala, S. S. , Devi Pantula, P. , Majumdar, S. and Mitra, K. , “Enabling online optimization and control of complex models through smart surrogates based on ANNs,” 2016 Indian Control Conference (ICC), 2016, pp. 214–221, https://dx.doi.org/10.1109/INDIANCC.2016.7441131.

5. Bockrath, S. , Rosskopf, A. , Koffel, S. , Waldhör, S. , Srivastava, K. and Lorentz, V. R. H. , “State of Charge Estimation using Recurrent Neural Networks with Long Short-Term Memory for Lithium-Ion Batteries,” IECON 2019 - 45th Annual Conference of the IEEE Industrial Electronics Society, 2019, pp. 2507–2511, https://dx.doi.org/10.1109/IECON.2019.8926815.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A roadmap for model-based bioprocess development;Biotechnology Advances;2024-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3