On Diverse System-Level Design Using Manifold Learning and Partial Simulated Annealing

Author:

Cobb A.,Roy A.,Elenius D.,Koneripalli K.,Jha S.

Abstract

AbstractThe goal in system-level design is to generate a diverse set of high-performing design configurations that allow trade-offs across different objectives and avoid early concretization. We use deep generative models to learn a manifold of the valid design space, followed by Monte Carlo sampling to explore and optimize design over the learned manifold, producing a diverse set of optimal designs. We demonstrate the efficacy of our proposed approach on the design of an SAE race vehicle and propeller.

Publisher

Cambridge University Press (CUP)

Reference32 articles.

1. Notin, P. , Hernández-Lobato, J. , and Gal, Y. 2021. Improving black-box optimization in VAE latent space using decoder uncertainty. arXiv preprint arXiv:2107.00096.

2. Deshwal, A. , Belakaria, S. , and Doppa, J. 2021. Bayesian Optimization over Hybrid Spaces. arXiv preprint arXiv:2106.04682.

3. Brookes, D. , Park, H. , and Listgarten, J. 2019. Conditioning by adaptive sampling for robust design. In International Conference on Machine Learning (pp. 773–782).

4. Liu, L. , Wang, M. , and Deng, J. 2020. A unified framework of surrogate loss by refactoring and interpolation. In Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part III 16 (pp. 278–293).

5. Hybrid Monte Carlo;Duane;Physics letters B,1987

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. hamiltorch: A PyTorch-based library for Hamiltonian Monte Carlo;Proceedings of Cyber-Physical Systems and Internet of Things Week 2023;2023-05-09

2. Microservices architectural based secure and failure aware task assignment schemes in fog‐cloud assisted Internet of things;International Journal of Intelligent Systems;2022-07-22

3. Trinity AI Co-Designer for Hierarchical Oracle-guided Design of Cyber-Physical Systems;2022 IEEE Workshop on Design Automation for CPS and IoT (DESTION);2022-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3