Author:
Dausch V.,Kröger J.,Kreimeyer M.
Abstract
AbstractThe present analytical design of shrink fits typically results in an uneven stress condition that can lead to failure in a variety of manners. With increasing loads and the use of brittle materials, the optimization of the stresses in the shrink fit hence becomes increasingly necessary. Currently existing approaches do not solve the problem satisfactorily or increase the manufacturing and design effort. This paper therefore considers the implementation of an AI-based stress optimization using reinforcement learning, which performs stress optimization by geometrically contouring the interstice.
Publisher
Cambridge University Press (CUP)
Reference24 articles.
1. Nasteski, V. (2017), “An overview of the supervised machine learning methods”, HORIZONS. B. 4, pp. 51–62.
2. Kollmann, F. G. (1984), “Welle-Nabe-Verbindungen: Gestaltung, Auslegung, Auswahl”, Springer, Berlin. 10.1007/978-3-642-61727-0
3. Vidner, J. , (2016) “Methode zur Bewertung der Ermüdungsfestigkeit von reibdauerbeanspruchten Systemen”, PhD thesis, TU Chemnitz.
4. Gropp, H. , Ziaei, M. (2012), “Tendenzielle Ermittlung von zulässigen Werten für das erweiterte Ruiz-Chen-Kriterium bei reibdauerbeanspruchten torsionsbelasteten Pressverbindungen”, VDI-Berichte vol. 2176, Düsseldorf, pp. 37–47.
5. IBM (2020), “Unsupervised Learning”, [online] https://www.ibm.com/cloud/learn/unsupervised-learning [retrieved on 09.11.2021]
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献