Abstract
AbstractLet
$0\leq \alpha \leq \infty $
,
$0\leq a\leq b\leq \infty $
and
$\psi $
be a positive function defined on
$(0,\infty )$
. This paper is concerned with the growth of
$L_{n}(x)$
, the largest digit of the first n terms in the Lüroth expansion of
$x\in (0,1]$
. Under some suitable assumptions on the function
$\psi $
, we completely determine the Hausdorff dimensions of the sets
$$\begin{align*}E_\psi(\alpha)=\bigg\{x\in(0,1]: \lim\limits_{n\rightarrow\infty}\frac{\log L_n(x)}{\log\psi(n)}=\alpha\bigg\} \end{align*}$$
and
$$\begin{align*}E_\psi(a,b)=\bigg\{x\in(0,1]: \liminf\limits_{n\rightarrow\infty}\frac{\log L_n(x)}{\log\psi(n)}=a, \limsup\limits_{n\rightarrow\infty}\frac{\log L_n(x)}{\log\psi(n)}=b\bigg\}. \end{align*}$$
Publisher
Cambridge University Press (CUP)
Reference17 articles.
1. Dimension of Besicovitch–Eggleston sets in countable symbolic space
2. Functions of slow increase and integer sequences;Jakimczuk;J. Integer Seq.,2010
3. Frequency of digits in the Lüroth expansion
4. [11] Lin, S. Y. and Li, J. J. , ‘Exceptional sets related to the largest digits in Lüroth expansions’, Int. J. Number Theory, to appear.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献