Abstract
AbstractWe show that the direct sum $\mathop{({X}_{1} \oplus \cdots \oplus {X}_{r} )}\nolimits_{\psi } $ with a strictly monotone norm has the weak fixed point property for nonexpansive mappings whenever $M({X}_{i} )\gt 1$ for each $i= 1, \ldots , r$. In particular, $\mathop{({X}_{1} \oplus \cdots \oplus {X}_{r} )}\nolimits_{\psi } $ enjoys the fixed point property if Banach spaces ${X}_{i} $ are uniformly nonsquare. This combined with the earlier results gives a definitive answer for $r= 2$: a direct sum ${X}_{1} {\mathop{\oplus }\nolimits}_{\psi } {X}_{2} $ of uniformly nonsquare spaces with any monotone norm has the fixed point property. Our results are extended to asymptotically nonexpansive mappings in the intermediate sense.
Publisher
Cambridge University Press (CUP)
Reference30 articles.
1. Products of uniformly noncreasy spaces
2. Numerical Ranges II
3. Strict convexity of absolute norms on ${ \mathbb{C} }^{2} $ and direct sums of Banach spaces;Takahashi;J. Inequal. Appl.,2002
4. On the structure of minimal invariant sets for nonexpansive mappings;Goebel;Ann. Univ. Mariae Curie-Skłodowska Sect. A,1975
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献