Remainders of metric completions

Author:

Knight C.J.

Abstract

Certain topological spaces X may bear various uniform structures compatible with the topology of X; to each uniform structure there corresponds a completion of X, that is, a complete space Z containing X as a dense subspace. For compact completions, there has been extensive study of the relationship between X and the possible remainders Z\X. This paper begins a study of the more general, and apparently easier, problem of the relationship between X and its not necessarily compact remainders. We find that for spaces X admitting a complete metric, every space Y which satisfies certain conditions obviously necessary for Y to be the remainder of a completion of X in fact occurs as such a completion.

Publisher

Cambridge University Press (CUP)

Subject

General Mathematics

Reference6 articles.

1. On Uniform Spaces with a Unique Structure

2. [3] Firby P.A. , “Lattices and compactifications”, (PhD thesis, University of Sheffield, Sheffield, 1970).

3. Uniformizable spaces with a unique structure

4. Some Pictorial Compactifications of the Real Line

5. A Note on Completion and Compactification.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3