Abstract
Certain topological spaces X may bear various uniform structures compatible with the topology of X; to each uniform structure there corresponds a completion of X, that is, a complete space Z containing X as a dense subspace. For compact completions, there has been extensive study of the relationship between X and the possible remainders Z\X. This paper begins a study of the more general, and apparently easier, problem of the relationship between X and its not necessarily compact remainders. We find that for spaces X admitting a complete metric, every space Y which satisfies certain conditions obviously necessary for Y to be the remainder of a completion of X in fact occurs as such a completion.
Publisher
Cambridge University Press (CUP)