Abstract
The Brück conjecture states that if a nonconstant entire function $f$ with hyper-order ${\it\sigma}_{2}(f)\in [0,+\infty )\setminus \mathbb{N}$ shares one finite value $a$ (counting multiplicities) with its derivative $f^{\prime }$, then $f^{\prime }-a=c(f-a)$, where $c$ is a nonzero constant. The conjecture has been established for entire functions with order ${\it\sigma}(f)<+\infty$ and hyper-order ${\it\sigma}_{2}(f)<{\textstyle \frac{1}{2}}$. The purpose of this paper is to prove the Brück conjecture for the case ${\it\sigma}_{2}(f)=\frac{1}{2}$ by studying the infinite hyper-order solutions of the linear differential equations $f^{(k)}+A(z)f=Q(z)$. The shared value $a$ is extended to be a ‘small’ function with respect to the entire function $f$.
Publisher
Cambridge University Press (CUP)
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献