On the discrepancy principle and generalised maximum likelihood for regularisation

Author:

Lukas Mark A.

Abstract

Let fnλ be the regularised solution of a general, linear operator equation, K f0 = g, from discrete, noisy data yi = g(xi ) + εi, i = 1, …, n, where εi are uncorrelated random errors with variance σ2. In this paper, we consider the two well–known methods – the discrepancy principle and generalised maximum likelihood (GML), for choosing the crucial regularisation parameter λ. We investigate the asymptotic properties as n → ∞ of the “expected” estimates λD and λM corresponding to these two methods respectively. It is shown that if f0 is sufficiently smooth, then λD is weakly asymptotically optimal (ao) with respect to the risk and an L2 norm on the output error. However, λD oversmooths for all sufficiently large n and also for all sufficiently small σ2. If f0 is not too smooth relative to the regularisation space W, then λD can also be weakly ao with respect to a whole class of loss functions involving stronger norms on the input error. For the GML method, we show that if f0 is smooth relative to W (for example f0Wθ, 2, θ > m, if W = Wm, 2), then λM is asymptotically sub-optimal and undersmoothing with respect to all of the loss functions above.

Publisher

Cambridge University Press (CUP)

Subject

General Mathematics

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3