Abstract
AbstractLet G be a finite group and
$\chi $
be a character of G. The codegree of
$\chi $
is
${{\operatorname{codeg}}} (\chi ) ={|G: \ker \chi |}/{\chi (1)}$
. We write
$\pi (G)$
for the set of prime divisors of
$|G|$
,
$\pi ({{\operatorname{codeg}}} (\chi ))$
for the set of prime divisors of
${{\operatorname{codeg}}} (\chi )$
and
$\sigma ({{\operatorname{codeg}}} (G))= \max \{|\pi ({{\operatorname{codeg}}} (\chi ))| : \chi \in {\textrm {Irr}}(G)\}$
. We show that
$|\pi (G)| \leq ({23}/{3}) \sigma ({{\operatorname{codeg}}} (G))$
. This improves the main result of Yang and Qian [‘The analog of Huppert’s conjecture on character codegrees’, J. Algebra478 (2017), 215–219].
Publisher
Cambridge University Press (CUP)
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献