Abstract
Abstract
We consider the two-dimensional minimisation problem for
$\inf \{ E_a(\varphi ):\varphi \in H^1(\mathbb {R}^2)\ \text {and}\ \|\varphi \|_2^2=1\}$
, where the energy functional
$ E_a(\varphi )$
is a cubic-quintic Schrödinger functional defined by
$E_a(\varphi ):=\tfrac 12\int _{\mathbb {R}^2}|\nabla \varphi |^2\,dx-\tfrac 14a\int _{\mathbb {R}^2}|\varphi |^4\,dx+\tfrac 16a^2\int _{\mathbb {R}^2}|\varphi |^6\,dx$
. We study the existence and asymptotic behaviour of the ground state. The ground state
$\varphi _{a}$
exists if and only if the
$L^2$
mass a satisfies
$a>a_*={\lVert Q\rVert }^2_2$
, where Q is the unique positive radial solution of
$-\Delta u+ u-u^3=0$
in
$\mathbb {R}^2$
. We show the optimal vanishing rate
$\int _{\mathbb {R}^2}|\nabla \varphi _{a}|^2\,dx\sim (a-a_*)$
as
$a\searrow a_*$
and obtain the limit profile.
Publisher
Cambridge University Press (CUP)