Abstract
We investigate surjective solutions of the functional equation $$\begin{eqnarray}\displaystyle \{\Vert f(x)+f(y)\Vert ,\Vert f(x)-f(y)\Vert \}=\{\Vert x+y\Vert ,\Vert x-y\Vert \}\quad (x,y\in X), & & \displaystyle \nonumber\end{eqnarray}$$ where $f:X\rightarrow Y$ is a map between two real ${\mathcal{L}}^{\infty }(\unicode[STIX]{x1D6E4})$-type spaces. We show that all such solutions are phase equivalent to real linear isometries. This can be considered as an extension of Wigner’s theorem on symmetry for real ${\mathcal{L}}^{\infty }(\unicode[STIX]{x1D6E4})$-type spaces.
Publisher
Cambridge University Press (CUP)
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献