Abstract
Let $p$ be a prime. If an integer $g$ generates a subgroup of index $t$ in $(\mathbb{Z}/p\mathbb{Z})^{\ast },$ then we say that $g$ is a $t$-near primitive root modulo $p$. We point out the easy result that each coprime residue class contains a subset of primes $p$ of positive natural density which do not have $g$ as a $t$-near primitive root and we prove a more difficult variant.
Publisher
Cambridge University Press (CUP)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献