The construction of groups in models of set theory that fail the Axiom of Choice

Author:

Hickman J.L.

Abstract

The purpose of this paper is to show that a well-known method for constructing “queer” sets in models of ZF set theory is also applicable to certain algebraic structures. An infinite set is called “quasi-minimal” if every subset of it is either finite or cofinite. In Section 1 I set out the two systems of set theory to be used in this paper, and illustrate the technique in its most fundamental form by constructing a model of set theory containing a quasi-minimal set. In Section 2 I show that by choosing the parameters appropriately, one can use this technique to obtain models of set theory containing groups whose carriers are quasi-minimal. In the third section various independence results are deduced from the existence of such models: in particular, it is shown that it is possible in ZF set theory to have an infinite group that satisfies both the ascending and descending chain conditions. The quasi-minimal groups constructed in Section 2 were all elementary abelian; in Section 4 it is shown that this was not just chance, but that in fact all quasi-minimal groups must be of this type. Finally in Section 5 permutations and permutation groups on quasi-minimal sets are examined.

Publisher

Cambridge University Press (CUP)

Subject

General Mathematics

Reference6 articles.

1. On an important theorem with respect to the operation groups of order pα, p being any prime number;Miller;Messenger Math.,1898

2. A question of Babai on groups

3. [5] Neumann B.H. , Private communication.

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The cardinal inequalityα2< 2α;Quaestiones Mathematicae;2011-03

2. Amorphe Potenzen kompakter Räume;Archiv für Mathematische Logik und Grundlagenforschung;1984-12

3. KATEGORIESÄTZE UND MULTIPLES AUSWAHLAXIOM;Mathematical Logic Quarterly;1983

4. Dedekind-Endlichkeit und Wohlordenbarkeit;Monatshefte f�r Mathematik;1982-03

5. A-Minimal Lattices;Zeitschrift für Mathematische Logik und Grundlagen der Mathematik;1980

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3