Abstract
AbstractSuppose that X and Y are two real normed spaces. A map
$f:X\rightarrow Y$
is called a min-phase-isometry if it satisfies
$$ \begin{align*} \min\{\|f(x)+f(y)\|,\|f(x)-f(y)\|\}=\min\{\|x+y\|,\|x-y\|\} \quad (x,y\in X). \end{align*} $$
We present properties of min-phase-isometries in the case that Y is strictly convex and show that if a min-phase-isometry f (not necessarily surjective) fixes the origin, then it is phase-equivalent to a linear isometry, that is,
$f(x)=\varepsilon (x)g(x)$
for
$x\in X$
, where
$g:X\rightarrow Y$
is a linear isometry and
$\varepsilon $
is a map from X to
$\{-1,1\}$
.
Publisher
Cambridge University Press (CUP)
Reference18 articles.
1. Wigner's theorem revisited
2. Phase-isometries on real normed spaces;Huang;J. Math. Anal. Appl.,2020
3. Wigner's theorem and its generalizations
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. THE WIGNER PROPERTY OF SMOOTH NORMED SPACES;Bulletin of the Australian Mathematical Society;2024-05-09