Abstract
AbstractLet a and b be positive integers and let
$\{U_n\}_{n\ge 0}$
be the Lucas sequence of the first kind defined by
$$ \begin{align*}U_0=0,\quad U_1=1\quad \mbox{and} \quad U_n=aU_{n-1}+bU_{n-2} \quad \mbox{for }n\ge 2.\end{align*} $$
We define an
$(a,b)$
-Wall–Sun–Sun prime to be a prime p such that
$\gcd (p,b)=1$
and
$\pi (p^2)=\pi (p),$
where
$\pi (p):=\pi _{(a,b)}(p)$
is the length of the period of
$\{U_n\}_{n\ge 0}$
modulo p. When
$(a,b)=(1,1)$
, such primes are known in the literature simply as Wall–Sun–Sun primes. In this note, we provide necessary and sufficient conditions such that a prime p dividing
$a^2+4b$
is an
$(a,b)$
-Wall–Sun–Sun prime.
Publisher
Cambridge University Press (CUP)
Reference11 articles.
1. [6] Lucas sequence, https://en.wikipedia.org/wiki/Lucas sequence, Wikipedia, 2023.
2. Fibonacci numbers and real quadratic p-rational fields
3. A search for Wieferich and Wilson primes
4. [5] Jones, L. , ‘A connection between the monogenicity of certain power-compositional trinomials and $k$ -Wall–Sun–Sun primes’, Preprint, 2022, arXiv:2211.14834.
5. [11] Wieferich Prime, https://en.wikipedia.org/wiki/Wieferich prime, Wikipedia, 2023.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献