Invex functions and constrained local minima

Author:

Craven B.D.

Abstract

If a certain weakening of convexity holds for the objective and all constraint functions in a nonconvex constrained minimization problem, Hanson showed that the Kuhn-Tucker necessary conditions are sufficient for a minimum. This property is now generalized to a property, called K-invex, of a vector function in relation to a convex cone K. Necessary conditions and sufficient conditions are obtained for a function f to be K-invex. This leads to a new second order sufficient condition for a constrained minimum.

Publisher

Cambridge University Press (CUP)

Subject

General Mathematics

Reference7 articles.

1. [7] Mond B. and Hanson M.A. , “On duality with generalized convexity” (Pure Mathematical Research Paper No. 80–4, Department of Mathematics, La Trobe University, Melbourne, 1980).

2. [6] Hanson M.A. and Mond B. , “Further generalizations of convexity in mathematical programming” (Pure Mathematics Research Paper No. 80–6, Department of Mathematics, La Trobe University, Melbourne, 1980). See also: J. Inform. Optim. Sci. (to appear).

3. Mathematical Programming and Control Theory

4. Sufficient Fritz John optimality conditions for nondifferentiable convex programming

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3