Abstract
Abstract
Let
$p_t(a,b;n)$
denote the number of partitions of n such that the number of t-hooks is congruent to
$a \bmod {b}$
. For
$t\in \{2, 3\}$
, arithmetic progressions
$r_1 \bmod {m_1}$
and
$r_2 \bmod {m_2}$
on which
$p_t(r_1,m_1; m_2 n + r_2)$
vanishes were established in recent work by Bringmann, Craig, Males and Ono [‘Distributions on partitions arising from Hilbert schemes and hook lengths’, Forum Math. Sigma10 (2022), Article no. e49] using the theory of modular forms. Here we offer a direct combinatorial proof of this result using abaci and the theory of t-cores and t-quotients.
Publisher
Cambridge University Press (CUP)