Author:
CABELLO SÁNCHEZ JAVIER,GORDILLO-MERINO ADRIÁN
Abstract
Our main result states that whenever we have a non-Euclidean norm $\Vert \cdot \Vert$ on a two-dimensional vector space $X$, there exists some $x\neq 0$ such that for every $\unicode[STIX]{x1D706}\neq 1$, $\unicode[STIX]{x1D706}>0$, there exist $y,z\in X$ satisfying $\Vert y\Vert =\unicode[STIX]{x1D706}\Vert x\Vert$, $z\neq 0$ and $z$ belongs to the bisectors $B(-x,x)$ and $B(-y,y)$. We also give several results about the geometry of the unit sphere of strictly convex planes.
Publisher
Cambridge University Press (CUP)
Reference10 articles.
1. Uniqueness properties of isosceles orthogonality in normed linear spaces;Alonso;Ann. Sci. Math. Québec,1994
2. The geometry of minkowski spaces — A survey. Part II
3. [8] L. Ma , Bisectors and Voronoi Diagrams for Convex Distance Functions, PhD Thesis, Fachbereich Informatik, Fernuniversität Hagen, 2000.
4. Universal points of convex bodies and bisectors in Minkowski spaces
5. Minkowski Geometry
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A reflection on Tingley's problem and some applications;Journal of Mathematical Analysis and Applications;2019-08