Abstract
Abstract
Let
$\mathcal {P}$
be the set of primes and
$\pi (x)$
the number of primes not exceeding x. Let
$P^+(n)$
be the largest prime factor of n, with the convention
$P^+(1)=1$
, and
$ T_c(x)=\#\{p\le x:p\in \mathcal {P},P^+(p-1)\ge p^c\}. $
Motivated by a conjecture of Chen and Chen [‘On the largest prime factor of shifted primes’, Acta Math. Sin. (Engl. Ser.)33 (2017), 377–382], we show that for any c with
$8/9\le c<1$
,
$$ \begin{align*} \limsup_{x\rightarrow\infty}T_c(x)/\pi(x)\le 8(1/c-1), \end{align*} $$
which clearly means that
$$ \begin{align*} \limsup_{x\rightarrow\infty}T_c(x)/\pi(x)\rightarrow 0 \quad \text{as } c\rightarrow 1. \end{align*} $$
Publisher
Cambridge University Press (CUP)