Abstract
AbstractLet f be analytic in the unit disk
$\mathbb {D}=\{z\in \mathbb {C}:|z|<1 \}$
and let
${\mathcal S}$
be the subclass of normalised univalent functions with
$f(0)=0$
and
$f'(0)=1$
, given by
$f(z)=z+\sum _{n=2}^{\infty }a_n z^n$
. Let F be the inverse function of f, given by
$F(\omega )=\omega +\sum _{n=2}^{\infty }A_n \omega ^n$
for
$|\omega |\le r_0(f)$
. Denote by
$ \mathcal {S}_p^{* }(\alpha )$
the subset of
$ \mathcal {S}$
consisting of the spirallike functions of order
$\alpha $
in
$\mathbb {D}$
, that is, functions satisfying
$$\begin{align*}{\mathrm{Re}} \ \bigg\{e^{-i\gamma}\dfrac{zf'(z)}{f(z)}\bigg\}>\alpha\cos \gamma, \end{align*}$$
for
$z\in \mathbb {D}$
,
$0\le \alpha <1$
and
$\gamma \in (-\pi /2,\pi /2)$
. We give sharp upper and lower bounds for both
$ |a_3|-|a_2| $
and
$ |A_3|-|A_2| $
when
$f\in \mathcal {S}_p^{* }(\alpha )$
, thus solving an open problem and presenting some new inequalities for coefficient differences.
Publisher
Cambridge University Press (CUP)
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献