Abstract
AbstractLet
$\Omega =\mathbb {Z}\omega _1+\mathbb {Z}\omega _2$
be a lattice in
$\mathbb {C}$
with invariants
$g_2,g_3$
and
$\sigma _{\Omega }(z)$
the associated Weierstrass
$\sigma $
-function. Let
$\eta _1$
and
$\eta _2$
be the quasi-periods associated to
$\omega _1$
and
$\omega _2$
, respectively. Assuming
$\eta _2/\eta _1$
is a nonzero real number, we give an upper bound for the number of algebraic points on the graph of
$\sigma _{\Omega }(z)$
of bounded degrees and bounded absolute Weil heights in some unbounded region of
$\mathbb {C}$
in the following three cases: (i)
$\omega _1$
and
$\omega _2$
algebraic; (ii)
$g_2$
and
$g_3$
algebraic; (iii) the algebraic points are far from the lattice points.
Publisher
Cambridge University Press (CUP)
Reference7 articles.
1. Linear forms in elliptic logarithms;David;J. reine angew. Math.,2009
2. Elliptic Functions and Transcendence
3. Auxiliary Polynomials in Number Theory
4. On algebraic values of Weierstrass $\sigma$-functions
5. [1] Besson, E. , ‘Points algébriques de la fonction sigma de Weierstrass’, Preprint, 2015. Available online at https://rivoal.perso.math.cnrs.fr/sigma.pdf.