Abstract
AbstractLet
$\mathbb {N}$
be the set of all nonnegative integers. For
$S\subseteq \mathbb {N}$
and
$n\in \mathbb {N}$
, let
$R_S(n)$
denote the number of solutions of the equation
$n=s_1+s_2$
,
$s_1,s_2\in S$
and
$s_1<s_2$
. Let A be the set of all nonnegative integers which contain an even number of digits
$1$
in their binary representations and
$B=\mathbb {N}\setminus A$
. Put
$A_l=A\cap [0,2^l-1]$
and
$B_l=B\cap [0,2^l-1]$
. We prove that if
$C \cup D=[0, m]\setminus \{r\}$
with
$0<r<m$
,
$C \cap D=\emptyset $
and
$0 \in C$
, then
$R_{C}(n)=R_{D}(n)$
for any nonnegative integer n if and only if there exists an integer
$l \geq 1$
such that
$m=2^{l}$
,
$r=2^{l-1}$
,
$C=A_{l-1} \cup (2^{l-1}+1+B_{l-1})$
and
$D=B_{l-1} \cup (2^{l-1}+1+A_{l-1})$
. Kiss and Sándor [‘Partitions of the set of nonnegative integers with the same representation functions’, Discrete Math.340 (2017), 1154–1161] proved an analogous result when
$C\cup D=[0,m]$
,
$0\in C$
and
$C\cap D=\{r\}$
.
Publisher
Cambridge University Press (CUP)
Reference15 articles.
1. Representation functions on finite sets with extreme symmetric differences
2. Integer sets with identical representation functions, II
3. Additive properties of certain sets
4. Partitions of natural numbers and their representation functions;Tang;Chinese Ann. Math. Ser. A,2016
5. A note on partitions of natural numbers and their representation functions;Yu;Integers,2012
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献